电流分配定则(英语:Currentdividerrule),是指在并联电路中,各负载分到的电流之间的关系。
对于电压源电路
电源电压为各负载的电压降
{\displaystyleV_{e}=V_{1}=V_{2}=\cdots=V_{n}}{\displaystyleV_{e}=V_{1}=V_{2}=\cdots=V_{n}}
各阻抗流经的电流
{\displaystyleI_{n}={\frac{V_{n}}{Z_{n}}}}{\displaystyleI_{n}={\frac{V_{n}}{Z_{n}}}}
总电流
{\displaystyleI_{\mathrm{total}}=\sum_{k=1}^{n}{I}_{k}=I_{1}+I_{2}+\cdots+I_{n}}{\displaystyleI_{\mathrm{total}}=\sum_{k=1}^{n}{I}_{k}=I_{1}+I_{2}+\cdots+I_{n}}
总阻抗
{\displaystyleZ_{\mathrm{total}}={\frac{V_{e}}{I_{\mathrm{total}}}}}{\displaystyleZ_{\mathrm{total}}={\frac{V_{e}}{I_{\mathrm{total}}}}}
对于电流源电路
总电流
{\displaystyleI_{\mathrm{total}}=\sum_{k=1}^{n}{I}_{k}=I_{1}+I_{2}+\cdots+I_{n}}{\displaystyleI_{\mathrm{total}}=\sum_{k=1}^{n}{I}_{k}=I_{1}+I_{2}+\cdots+I_{n}}
总阻抗
{\displaystyle{\frac{1}{Z_{\mathrm{total}}}}={\frac{1}{Z_{1}}}+{\frac{1}{Z_{2}}}+\cdots+{\frac{1}{Z_{n}}}}{\displaystyle{\frac{1}{Z_{\mathrm{total}}}}={\frac{1}{Z_{1}}}+{\frac{1}{Z_{2}}}+\cdots+{\frac{1}{Z_{n}}}}
各分路电流
{\displaystyleI_{\mathrm{n}}={\frac{Z_{\mathrm{total}}}{Z_{n}}}\cdotI_{\mathrm{total}}}{\displaystyleI_{\mathrm{n}}={\frac{Z_{\mathrm{total}}}{Z_{n}}}\cdotI_{\mathrm{total}}}
在只有2个电阻的并联电路里,相关计算公式可以简化为:
总电阻
{\displaystyleR_{\mathrm{total}}={\frac{R_{1}\cdotR_{2}}{R_{1}+R_{2}}}}{\displaystyleR_{\mathrm{total}}={\frac{R_{1}\cdotR_{2}}{R_{1}+R_{2}}}}
各分路电流
{\displaystyleI_{1}={\frac{R_{2}}{R_{1}+R_{2}}}\cdotI_{\mathrm{total}}}{\displaystyleI_{1}={\frac{R_{2}}{R_{1}+R_{2}}}\cdotI_{\mathrm{total}}}
{\displaystyleI_{2}={\frac{R_{1}}{R_{1}+R_{2}}}\cdotI_{\mathrm{total}}}{\displaystyleI_{2}={\frac{R_{1}}{R_{1}+R_{2}}}\cdotI_{\mathrm{total}}}